Семинарское занятие 3 (MATLAB)
Тема: ROC/PR, подбор порога (threshold tuning), cost-sensitive классификация.
Цель занятия
1) Научиться получать вероятности/score модели и строить ROC и PR кривые.
2) Подобрать порог по критериям (F1, Youden’s J, минимизация стоимости ошибок).
3) Реализовать cost-sensitive решение: разные цены FP и FN.
Входные данные
Используйте бинарный датасет (2 класса). Варианты:
A) Встроенный датасет Breast Cancer Wisconsin (если есть).
B) Любой свой CSV (например, “OK/Defect”).

Важно: один из классов может быть редким (дисбаланс) — так PR-кривая будет особенно полезна.
Задание (что нужно сделать)
1. Загрузить данные и подготовить X (признаки) и y (метки). y должен быть бинарным (0/1 или два класса).
2. Сделать train/validation/test split (пример: 60/20/20) со стратификацией и фиксированным seed.
3. Обучить вероятностную модель (Naive Bayes или логистическая регрессия). Получить score/вероятности на validation и test.
4. Построить ROC-кривую и вычислить AUC на validation.
5. Построить PR-кривую и вычислить Average Precision (AP) на validation.
6. Подобрать порог t тремя способами: (а) максимум F1, (б) максимум Youden’s J = TPR−FPR, (в) минимум ожидаемой стоимости ошибок при заданных cost_FN и cost_FP.
7. Зафиксировать найденный порог и оценить качество на test: confusion matrix, accuracy, precision, recall, F1, cost.
8. Сделать вывод: какой порог лучше при редком положительном классе и высокой цене FN.
Что сдавать
1) MATLAB-скрипт Seminar3_ROC_PR_Threshold_Cost.m
2) Отчёт 1–2 страницы: ROC/PR графики, выбранный порог, confusion matrix на test, таблица метрик, вывод.
3) (Опционально) сохранение порога и метрик в .mat
Критерии оценивания (макс. 15 баллов)
• Корректный split (train/val/test) — 3 б.
• ROC + AUC — 3 б.
• PR + AP — 3 б.
• Подбор порога (3 метода) — 4 б.
• Cost-sensitive анализ и вывод — 2 б.
Бонус +2 б: сравнение двух моделей (например, NB vs Logistic) на тех же split.
Шаблон кода MATLAB (копируйте и запускайте)
%% Seminar 3: ROC/PR, threshold tuning, cost-sensitive
rng(42);

%% 1) Данные (пример: встроенный "cancer_dataset" из Neural Network Toolbox)
% Если у вас нет этого датасета, используйте свой CSV ниже.
try
 load cancer_dataset % X: 9x699, T: 2x699 (one-hot)
 X = X'; % 699x9
 y = T(2,:)'; % берем 2-й класс как "positive" (1)
 y = logical(y);
catch
 % Свой датасет:
 % T = readtable("data.csv");
 % y = categorical(T.Label); % затем преобразовать в 0/1
 % X = table2array(T(:, setdiff(T.Properties.VariableNames, {'Label'})));
 error("Нет встроенного датасета. Подключите свой CSV в блоке catch.");
end

% y должно быть 0/1:
y = double(y); % 0/1

%% 2) Train/Val/Test split 60/20/20 со стратификацией
cv1 = cvpartition(y,'Holdout',0.4); % 60% train, 40% temp
idxTr = training(cv1);
idxTmp = test(cv1);

Xtr = X(idxTr,:); ytr = y(idxTr);
Xtmp = X(idxTmp,:); ytmp = y(idxTmp);

cv2 = cvpartition(ytmp,'Holdout',0.5); % 20% val, 20% test
idxVal = training(cv2);
idxTe = test(cv2);

Xval = Xtmp(idxVal,:); yval = ytmp(idxVal);
Xte = Xtmp(idxTe,:); yte = ytmp(idxTe);

%% 3) Модель (вариант A: Naive Bayes)
% Для бинарного y удобнее сделать categorical:
mdl = fitcnb(Xtr, categorical(ytr));

% Score/Posterior probabilities
% predict возвращает: predictedLabel, posteriorProbabilities
[~, postVal] = predict(mdl, Xval);
[~, postTe] = predict(mdl, Xte);

% Определим, какая колонка соответствует "positive"=1
classNames = mdl.ClassNames; % categorical(0) и categorical(1)
posClass = categorical(1);
posIdx = find(classNames == posClass);

pVal = postVal(:, posIdx); % вероятность positive на val
pTe = postTe(:, posIdx); % вероятность positive на test

%% 4) ROC и AUC (validation)
% perfcurve требует метки и score
[Xroc, Yroc, Troc, AUCroc] = perfcurve(yval, pVal, 1);
figure; plot(Xroc, Yroc); grid on;
xlabel('FPR'); ylabel('TPR (Recall)'); title(sprintf('ROC (AUC=%.3f) [Validation]', AUCroc));

%% 5) PR и AP (validation)
% perfcurve с 'xCrit','reca','yCrit','prec' строит PR
[Recall, Precision, Tpr, AUCpr] = perfcurve(yval, pVal, 1, 'xCrit','reca','yCrit','prec');
figure; plot(Recall, Precision); grid on;
xlabel('Recall'); ylabel('Precision'); title(sprintf('PR curve (AP≈%.3f) [Validation]', AUCpr));

%% 6) Подбор порога t (3 метода)
% 6.1 F1-max
% Пройдём по кандидатам порога = значения Tpr (из perfcurve PR)
thrCandidates = unique([0; Tpr; 1]);
bestF1 = -inf; bestT_F1 = 0.5;

for t = thrCandidates'
 yhat = double(pVal >= t);
 [prec, rec, f1] = binMetrics(yval, yhat);
 if f1 > bestF1
 bestF1 = f1; bestT_F1 = t;
 end
end

% 6.2 Youden's J = TPR - FPR (используем ROC точки)
% Troc соответствует порогам для ROC
J = Yroc - Xroc;
[~, jIdx] = max(J);
bestT_J = Troc(jIdx);

% 6.3 Cost-sensitive: минимизация стоимости ошибок
cost_FN = 10; % цена пропуска (FN) — поменяйте под задачу
cost_FP = 1; % цена ложной тревоги (FP)
bestCost = inf; bestT_cost = 0.5;

for t = thrCandidates'
 yhat = double(pVal >= t);
 [FP, FN] = fpfn(yval, yhat);
 C = cost_FN*FN + cost_FP*FP;
 if C < bestCost
 bestCost = C; bestT_cost = t;
 end
end

fprintf('Best threshold (F1-max) = %.4f | F1=%.3f\n', bestT_F1, bestF1);
fprintf('Best threshold (Youden J) = %.4f\n', bestT_J);
fprintf('Best threshold (Cost-min) = %.4f | Cost=%.2f (FN cost=%g, FP cost=%g)\n', bestT_cost, bestCost, cost_FN, cost_FP);

%% 7) Оценка на TEST с выбранными порогами
evaluateThreshold("F1-max", bestT_F1, pTe, yte, cost_FN, cost_FP);
evaluateThreshold("YoudenJ", bestT_J, pTe, yte, cost_FN, cost_FP);
evaluateThreshold("Cost-min",bestT_cost,pTe, yte, cost_FN, cost_FP);

%% ===== ВСПОМОГАТЕЛЬНЫЕ ФУНКЦИИ =====
function [precision, recall, f1] = binMetrics(yTrue, yPred)
TP = sum((yTrue==1) & (yPred==1));
FP = sum((yTrue==0) & (yPred==1));
FN = sum((yTrue==1) & (yPred==0));
precision = TP / max(TP+FP, 1);
recall = TP / max(TP+FN, 1);
f1 = 2*precision*recall / max(precision+recall, 1e-12);
end

function [FP, FN] = fpfn(yTrue, yPred)
FP = sum((yTrue==0) & (yPred==1));
FN = sum((yTrue==1) & (yPred==0));
end

function evaluateThreshold(name, t, p, yTrue, costFN, costFP)
yPred = double(p >= t);
CM = confusionmat(yTrue, yPred);
acc = sum(diag(CM))/sum(CM(:));

[prec, rec, f1] = binMetrics(yTrue, yPred);
[FP, FN] = fpfn(yTrue, yPred);
cost = costFN*FN + costFP*FP;

fprintf('\n=== %s ===\n', name);
fprintf('threshold = %.4f | Accuracy=%.3f | Precision=%.3f | Recall=%.3f | F1=%.3f\n', t, acc, prec, rec, f1);
fprintf('FP=%d | FN=%d | Cost=%.2f\n', FP, FN, cost);

figure; confusionchart(categorical(yTrue), categorical(yPred));
title(sprintf('%s: Confusion Matrix (t=%.3f)', name, t));
end

Примечания
• Если у вас нет встроенного cancer_dataset, подключите свой CSV в блоке catch.
• Cost-sensitive: увеличьте cost_FN, если пропуск “брака/болезни” дороже ложной тревоги.
• Порог подбирайте только на validation. Test используйте один раз для финальной оценки.
